返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。公仔箱論壇+ O/ r! |3 @2 p, ?( l
5.39.217.779 h. b" z; M1 N8 b2 b
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:
9 p9 |: s( @- w" N9 `7 n5.39.217.77
; u2 o, z; r% t- X' Y1 T7 S. Q: Z: d  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。   P$ D% }0 o+ e/ D4 N( {5 Y

/ o' n, x6 ?  E5.39.217.77  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况: 公仔箱論壇# g9 V8 L/ i1 Z, r

' S; X- ~& q! J4 z( c$ X2 D1 utvb now,tvbnow,bttvb  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。5 a) s7 Q7 @. f( U" m
公仔箱論壇& C: K0 {1 {  ?  a
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。 5.39.217.777 h# i7 I* `6 p* [
" {" e, R; K& R- Q
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。
2 t; c! n+ N2 N
3 a4 ?- P/ N& F9 ^' D0 t* u$ A公仔箱論壇  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
6 L7 k0 d& b4 J1 h5 R) @5 DTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
0 y5 V" ]& t! `% _2 }TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
( j; }4 W4 }8 H5 Z0 p: u8 Y# L) Z1 Q# Y1 U* q# U
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。
' ]4 N% o$ l$ w$ k0 N7 v5.39.217.77
1 ]: g2 H( b7 U; ?  这时,可以称第二次了。这次称后可能出现的是三种情况: 5.39.217.77. \7 T$ p. O/ ]5 ~  u0 f" g3 l0 g4 U
  U/ a& E& ?( t- I+ [' I4 X
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
7 I3 j% C7 y6 Q+ P3 xtvb now,tvbnow,bttvb7 Z; Y1 I+ N7 \! C& f
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 公仔箱論壇3 V* z6 X& m0 S8 v/ [2 i7 q/ _

# [+ D' x6 D/ B3 J" z5 I! [% K* K. H# B6 q  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。 % Q+ U% q1 A3 x4 @" `  Y# B( ]- d
tvb now,tvbnow,bttvb+ G7 e! ?# `* U- d" c" v+ U
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。; Q+ b# ^  e5 D  n: {1 ?* s9 w

7 M! k) n: j" M$ V" w" ]5.39.217.77  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
! K# s) W1 i* {- Q) j6 w8 ]0 d
1 H  ^% z; D: D# j  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
- t! O/ _3 I, F/ P( T5.39.217.77公仔箱論壇2 K! J  K- }+ \8 T" |# n7 r: e, i4 |9 I( h
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害5.39.217.77" G8 t  B2 ~+ r8 ], x3 u
公仔箱論壇4 n  L, p: u7 G+ F0 {5 N8 \3 @
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表