返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。tvb now,tvbnow,bttvb5 w+ ~3 K' A) x

& |. }: O/ q& ^3 C! J公仔箱論壇  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: + h# }! C* I4 b1 s& i
& l0 _6 U2 `  \' `2 e# y" G; y: q
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
# M! A* I1 D' F  ]5 j
; F) M) C# R) E" Q, J8 b公仔箱論壇  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
8 I' x0 L; H4 m, l公仔箱論壇
( r( z; o( Q7 |: M6 ?" I( `公仔箱論壇  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
  R8 m" D$ u& a; s, q* r; C" ktvb now,tvbnow,bttvb
, l0 }6 j2 G1 z6 B! ^  T公仔箱論壇  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
( o+ Z7 x0 h3 g% x9 X4 r公仔箱論壇tvb now,tvbnow,bttvb( j9 Y# x+ r1 I+ Y
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。
  w9 F1 ?  W' V9 n( M1 Y; W$ k公仔箱論壇公仔箱論壇1 h; G" l) e$ }% b' |) D4 H3 ^8 N, ~
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
) E8 c0 {' h' H9 a; `. g1 W5.39.217.77TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。( Q! j% g( n' S7 ~& ]1 f/ b
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 , P6 E. ]$ S% l, q5 ?* B( v) a
5.39.217.777 F  S2 o4 Y/ a
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。; @3 Q7 A5 G2 h
  C% j, p" f  p% d- B' X# D
  这时,可以称第二次了。这次称后可能出现的是三种情况: 5.39.217.777 g4 \+ j5 z) I7 @. l) p" O7 z

  x( [- l- Z- N" M! u3 K5 Otvb now,tvbnow,bttvb  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。 5.39.217.77( I; e& B! n, j( k; L6 O

' h) q3 N9 E* U4 s- `$ S. c# c2 c5.39.217.77  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
) b7 k( {% C2 \4 O, cTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
0 T/ M  x- a  T  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。 公仔箱論壇7 p0 I0 L3 B+ K4 L1 P7 }
tvb now,tvbnow,bttvb( h; _* m) o0 r0 r' @. P
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。5 a0 U$ G: z' Q5 j. b$ D% P
5.39.217.774 B7 U: g" C( ?3 f- F8 L; o* s( c
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 8 f/ O) J; `0 t, R4 _% g
1 Y, d3 N2 P. t5 @7 N
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。 . h( ~/ N; ~6 X2 q
tvb now,tvbnow,bttvb. ?1 B- W+ X( A/ l
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。1 y$ }) L: A/ Q0 b/ E5 s

; g1 [, i4 S  Y[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表