返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。
$ m" g1 |5 v5 ]8 [' q" k. {: Y# k( `; K4 @( N8 f) K
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: 公仔箱論壇5 o: j, n, m; r, F9 x& K" r" f
5.39.217.772 v/ y1 {6 A& }( H, g
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。 5.39.217.77, Z4 w$ X# M& c1 O# I, G5 u% E

( j3 S* ^9 Q, F' C9 STVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况: tvb now,tvbnow,bttvb) ~6 R6 i7 F# u& y9 Q/ u

" k4 O+ u" q/ v5.39.217.77  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
& r: M* E) y( R- ~/ J
$ d( k3 U' O2 F5 e7 P, x0 ltvb now,tvbnow,bttvb  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
1 m% {0 j/ H8 M! |# G1 ~5.39.217.77+ A. T9 S+ _8 H$ L, p9 {2 }
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。tvb now,tvbnow,bttvb4 B1 G. K! C" b/ M. [

7 ]; O0 w6 j: E- c0 ]( q) T6 E1 e  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
# K( Z, t" s+ l, T; e% G9 V5.39.217.77
9 ^8 S6 d8 c2 y公仔箱論壇  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
5 Q  n+ k' V* b" ~' E) H0 h
1 z/ g5 _# r: @: |6 b公仔箱論壇  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。5.39.217.77# g1 l/ y8 d8 G9 C/ d. X# n

7 D1 T7 |9 i: Z/ m公仔箱論壇  这时,可以称第二次了。这次称后可能出现的是三种情况:
4 F2 X' u  i4 P9 q- ]
# b3 P4 j9 Z2 Q: b" t, M  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
& a4 u  O, d8 O- D9 nTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
/ o# n! ?* G+ u  ?! E$ C# ]  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
% B! ^0 }# a0 g+ v1 G+ Ntvb now,tvbnow,bttvb
+ J  f% k, w; N2 s( u" l4 M5.39.217.77  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
$ {/ j9 l. I8 h9 I
9 f! Q& X1 R& |# Z2 o, otvb now,tvbnow,bttvb  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。
  U. h! x6 C9 k0 k& O. }; G1 O, dtvb now,tvbnow,bttvb
7 k$ `3 Y  V4 v% C( x5.39.217.77  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 5 F$ S+ l! n( K0 l3 I8 P5 F

% J; z( q0 r# f5.39.217.77  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。 5.39.217.77) y4 t7 s+ |5 @6 S' v! g4 P! H& p
tvb now,tvbnow,bttvb1 z2 ~$ p( H* @* d5 h
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害
) P' m$ i/ v9 N! ?7 @+ H# [5 @5.39.217.77TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。0 T7 G! p# G7 C2 O4 ~3 N% o
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表