返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。, I8 h9 A1 X% W7 s( s4 E, o

5 G' \1 }6 R3 ctvb now,tvbnow,bttvb  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。! K# ~) V  g$ g6 W; ^
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。8 B, o' y8 {& S) H( k2 Y
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
7 z% Z, M6 V$ R5.39.217.77:8898公仔箱論壇4 w( W8 j" [* `- [9 ]
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
. ?& B, P' o- P9 c- ^" e& Q公仔箱論壇
. J" S) Q0 Z. O1 L+ x+ Q% l  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
3 o  x& y7 V7 J& s$ j3 B公仔箱論壇tvb now,tvbnow,bttvb; J( v: |* |& i, f3 |( b9 ^
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。 公仔箱論壇, Y6 {' s9 @3 [& G8 C- V; C; F9 u

4 d# O& K4 k# M, Htvb now,tvbnow,bttvb  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。
4 S* e/ \) [1 O5 [, ^+ C8 `. d* }5.39.217.77:8898公仔箱論壇, T9 `- V3 ^* @* Q( n1 ^: ?) {* F
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
5 a; r0 Q8 I6 _, i5.39.217.77:8898
' G4 q. y1 u" p" X. M# Z9 y- Q3 w  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 . {) T( h, l9 K; ]
" I! D( Z* ^% U( e% U
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。
, n% t# o6 w. }* G3 _9 g' D& e5 P0 v% B9 w( @
  这时,可以称第二次了。这次称后可能出现的是三种情况:
1 q/ h3 `$ l  a6 @6 t7 B2 [( ?% h" }3 c% x! |6 \. w. V
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
0 `4 D) u7 J1 ^+ i$ M: |% Z. h+ w$ Q. F/ y$ B+ L5 [4 g
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 $ L' z1 x: L# O& L/ v5 h. i5 T

+ ~8 b  T  Z. k% P0 ]) xTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。 公仔箱論壇% R7 p- l' ^5 W2 N. D

0 Z( I( Q- G9 e( @5.39.217.77:8898  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。
& _' p8 [; Z" Q* I5.39.217.77:8898
9 F8 E  ~: a% x6 C& H- P5 H  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 * w6 ]7 B6 }4 z( S8 o( M& P
: g; I5 j7 J: {, K4 W! W2 f
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。, |! K* U. f, S2 s

7 `; ^, r# E* r  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害
2 n2 k2 P5 \+ G' B! x5.39.217.77:8898公仔箱論壇5 w6 y' a5 `) J& A' {: a0 G
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表