返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。tvb now,tvbnow,bttvb1 E, u  d% p5 x6 P
5.39.217.77:88980 D0 T, X8 B$ L* y
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:
( {9 O+ B; s, e: F9 ]% oTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。公仔箱論壇% X- j+ |" p& z7 {
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
# n1 S4 C1 r6 r' P8 yTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。( x' N- J2 B* G, W* N* T& m
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
0 @& T0 I- o# m( j9 v公仔箱論壇5.39.217.77:8898/ L% i+ Q( \9 t1 r6 C! y# k% a
  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。 5.39.217.77:88984 Q, Y5 j4 x# K$ ~. A9 C
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。. |, ?: u8 c0 y* Q- D% z# p7 K
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
! I+ V+ w1 z& j3 y: g7 K' g0 Ltvb now,tvbnow,bttvb
) @& d1 e6 ?; l" |2 |4 _' LTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。# P  n% }0 y3 k, o
5.39.217.77:8898" i9 P, S5 [. d# u9 @7 v- s
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 * }! \) s8 c( |' u) I) N: L& n0 [3 Q
公仔箱論壇! T3 \+ ^5 Z6 ]0 L; L* T
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
( I/ v- _9 Z  E4 R! L) T" \7 \3 ^3 \0 ]$ L$ Q8 f: p
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。
+ g0 N. [- d9 s; C. f7 \; u3 d公仔箱論壇
8 ~8 l0 s, i% q( P9 Btvb now,tvbnow,bttvb  这时,可以称第二次了。这次称后可能出现的是三种情况: 2 u. W/ g+ z' y: z6 e* R2 I; r
公仔箱論壇1 H3 a1 {* Z! p9 g/ C3 M7 H
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
2 y" @2 k3 B& F5.39.217.77:8898公仔箱論壇3 M8 V9 V( }1 l) X
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
+ E3 p) C+ \# wtvb now,tvbnow,bttvb
+ h1 ^1 U0 T% h' W5 U5 ]& w  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
+ Y' W! X( P  n" K; d3 D% jtvb now,tvbnow,bttvb3 v( O: B- N0 `% o5 T. y: P. N
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。. G" m8 i  k6 F
$ @) m+ t0 d$ B! {. N7 @5 B% O
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 tvb now,tvbnow,bttvb. P% h( r  h8 U8 f
5.39.217.77:88987 @! b; x" {" B4 V
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
2 x4 s2 a3 s" Y: t5 g& W' k8 {: d* x7 D
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。7 ^6 u; ^. |( M2 F

' \- Q: q" q/ R5.39.217.77:8898[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表