近期,華為AI算法團隊表示在人工智能領域取得顯著突破,研究併發表一種創新的大模型 KV Cache 壓縮算法,稱為「RazorAttention」。
3 W, a; O6 a3 a+ l! z1 I3 ]/ X9 F $ ^5 }8 V2 e5 R3 R( Z# J7 d
/ @+ n3 c! z5 X5 u% r5.39.217.77:8898
r/ {# u$ H% H$ ?( [tvb now,tvbnow,bttvb 新算法具有卓越的性能表現,可以有效節省高達 70%的大模型推理 RAM 佔用,AI 大模型提供更多的空間,提供強有力的支援。tvb now,tvbnow,bttvb% U2 U. g3 q! E* a, g, h9 D4 Y" r
目前相關論文《RazorAttention: Efficient KV Cache Compression Through Retrieval Heads》已被深度學習領域國際頂級會議 ICLR 2025 收錄,可見其重要性。
8 T$ e4 G. Z, Q- ptvb now,tvbnow,bttvb華為表示,RazorAttention 是業界首個基於 Attention 可解釋性的離線靜態 KV Cache 壓縮算法,打破一直以來 AI 大模型長序列 KV Cache 壓縮不理想的硬傷,減少設備負擔,提高計算速度。" k: b/ H$ x4 y
RazorAttention 是通過檢索頭的設定,保證上下文中重要且主要的信息保留,且在保持高精度(誤差小於1%)的前提下,實現靜態有效壓縮最大70% 的 KV Cache RAM 佔用,大大減少 AI 大模型推理的成本。5.39.217.77:8898, S" o+ u% m6 D7 Q/ l
值得一提的是,目前 RazorAttention 算法已實現產品化,並集成在昇騰 MindIE/MindStudio,支援主流 8K~1M 長序列 KV Cache 壓縮,在 32K 以上場景增量吞吐提升20%+。 |