返回列表 回復 發帖

5个海盗100枚金币

5个海盗抢得100枚金币后,讨论如何进行公正分配。他们商定的分配原则是:) r2 e7 `- M' i% M) I& p2 ]5 ^
  
$ K8 ]# D) W7 h
  (1)抽签确定各人的分配顺序号码(12345);4 |6 m% e! o  t- o" I
  5.39.217.77:8898* m% o* S) R* l5 [. A" d
  (2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将1号扔进大海喂鲨鱼;
; {3 ~1 D" v4 o
& T# @6 y' n* a+ C1 d
  (3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人同意时,才会按照他的提案进行分配,否则也将被扔入大海
% C/ W: b7 h- K6 C- ^6 Y/ b. G   K& |/ L) l5 J3 A- n4 Y$ X# G1 @% e4 B
  (4)依此类推。, o6 k) T1 N  L, q4 n0 W
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。0 Q7 v# B3 z; m, l' M+ d! P
  这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢? tvb now,tvbnow,bttvb9 B9 R2 p2 ?5 q! A: `7 L

! t9 L4 O+ q% I/ {( T) @TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。答案将在20个回复后公布2 n6 V- c* k6 I- c2 o. l5 D* \
好像是什麽最好死掉一個人,其它每人25個金幣( x. J5 O0 M5 e

5 k1 ?- q  P/ U: J[ 本帖最後由 laoshuerdai 於 2007-8-11 11:20 PM 編輯 ]
是博奕論的題目嗎??? 沒有唸過啊..., g8 C4 q& _" }

& b+ v9 y8 C8 }4 O) C' ]- h: l..剛看了答案, 可以憑空想出答案的人智商必定非常非常的高...2 k  t$ O2 T+ G* c! o/ L

. l# A! F" B- l* Itvb now,tvbnow,bttvb[ ????? liangl_l ? 2007-8-15 10:48 AM ?? ]

回復第 1 帖由 solidsnake 所發的帖子

hahaha wat is the answer leh?
此题公认的标准答案是:1号海盗分给3号1枚金币,4号或5号2枚金币,自己则独得97枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。现来看如下各人的理性分析: 公仔箱論壇) r) R; B, b. F% q( R
首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。 5.39.217.77:88981 `6 f6 L. [& w% q/ J& e
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。 5.39.217.77:88985 v9 X( v0 R+ H0 B
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。 # v& P: E" e9 x' Q
但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。这样,2号就可以屁颠屁颠的拿走98枚金币了。 公仔箱論壇3 b& r1 T. |) l- _4 U- p
不幸的是,1号海盗更不是省油的灯,经过一番推理之后也洞悉了2号的分配方案。他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了
dulness
人總是貪心的~~~~~~~~~~~~~~~~~~
返回列表