返回列表 回復 發帖

[IQ題] 这三个数分别是什么?

有3个正整数,任意两个相乘加1,都是第三个的整数倍,这三个数分别是多少?
0 B7 E3 l# m9 \3 f0 k5.39.217.77:8898别猜答案,会算的给出过程.
另外,答案没有在题目里直接公布,不知道怎么隐藏,呵呵,所以只好先看看有没有人会了
是1 2 3
/ I" n# ~4 S6 S! c/ t5 Q9 \+ e4 s因为1的以外的所有正整数都是它的整数倍
好多答案啊``无聊的问题``
1 1 1, because any number can have factor of 1. also, only 1 can be true if any random number multiple plus has to be divided by the remaining digit. So, 1 1 1 is my answer.
249还有123
123 and 789?
three 1
123.。。
1 1 1
我列了个复杂的方程,但解不出了。不过如果不是1、1、1,楼主可能得注明是“三个不同的正整数”
111, 789 ... and many many others.
They would be 111 or 123' l/ q: P& m. `. q2 S3 b3 i- @2 G
For 111 would be 1x1+1=2 that is 2 times of 3rd 1( I, a* o: T* r
For 123公仔箱論壇; ^. _) V( L$ y# J" W$ Y+ ~
1x2+1=3 that is 1 time of 3
; E( O& j" D' ~/ w1x3+1=4 that is 2 times of 2
+ k% t. A& ]5 S( p& t2x3+1=7 thta is 7 times of 1
返回列表