近期,華為AI算法團隊表示在人工智能領域取得顯著突破,研究併發表一種創新的大模型 KV Cache 壓縮算法,稱為「RazorAttention」。公仔箱論壇8 `+ L% U- s0 T
$ k1 E z# Q4 A+ d7 ]0 C8 D5.39.217.775.39.217.77* s6 o8 K7 h3 q" X/ \
! F; H' a$ W! ^4 _4 J, p公仔箱論壇 新算法具有卓越的性能表現,可以有效節省高達 70%的大模型推理 RAM 佔用,AI 大模型提供更多的空間,提供強有力的支援。5.39.217.77$ J4 f( a# g# r, a9 h9 Y
目前相關論文《RazorAttention: Efficient KV Cache Compression Through Retrieval Heads》已被深度學習領域國際頂級會議 ICLR 2025 收錄,可見其重要性。
, W0 ] A3 p& Gtvb now,tvbnow,bttvb華為表示,RazorAttention 是業界首個基於 Attention 可解釋性的離線靜態 KV Cache 壓縮算法,打破一直以來 AI 大模型長序列 KV Cache 壓縮不理想的硬傷,減少設備負擔,提高計算速度。
/ y$ m% t" _" E; s- P. t' [tvb now,tvbnow,bttvbRazorAttention 是通過檢索頭的設定,保證上下文中重要且主要的信息保留,且在保持高精度(誤差小於1%)的前提下,實現靜態有效壓縮最大70% 的 KV Cache RAM 佔用,大大減少 AI 大模型推理的成本。公仔箱論壇: j; \: m8 n/ y6 \5 I# J/ u+ U
值得一提的是,目前 RazorAttention 算法已實現產品化,並集成在昇騰 MindIE/MindStudio,支援主流 8K~1M 長序列 KV Cache 壓縮,在 32K 以上場景增量吞吐提升20%+。 |